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Thermodynamics of critical strange nonchaotic attractors
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The thermodynamic formalism is applied to dynamical attractors which have fractal geometry and on which
all Lyapunov exponents are exactly zero. Suchcritical strange nonchaotic attractors~SNAs! which arise, for
example, in the Harper system exhibit a static phase transition in the free energy. The Tsallis nonextensive
entropy which is known to characterize the thermodynamics of systems with leading Lyapunov exponent zero
is found to be subadditive for the critical states. These properties are shared by other quasiperiodic systems
with critical SNAs.
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I. INTRODUCTION

Strange nonchaotic dynamics@1,2# is generic in quasiperi-
odically driven dynamical systems. Such motion, which
confined to attractors that have a fractal structure, is cha
terized by having a nonpositive largest Lyapunov expone
Thus the motion is globally stable, although over short s
ments of a trajectory, the dynamics can be unstable, w
positive local Lyapunov exponent@3#.

If all the Lyapunov exponents are strictly zero, then su
strange nonchaotic attractors~SNAs! are termedcritical. The
creation and stability of such attractors have been stud
extensively in the past few years, mainly in a variety
dynamical systems of the form

xn1152@xn2E1Vn#21, ~1!

whereVn is a quasiperiodic function of the indexn. Such a
discrete mapping can be shown to obtain from the disc
Schrödinger equation

cn111cn211Vncn5Ecn , ~2!

where the potentialVn is a function of the lattice siten. The
variable xn in Eq. ~1! is the ratio of wave-function ampli
tudes on neighboring sites,cn21 /cn .

For E an eigenvalue of Eq.~2!, it can easily be seen tha
the inverse localization length is the Lyapunov exponent
the dynamics generated in the mapping, Eq.~1!. Thus local-
ized states necessarily correspond to attractors, while
tended states, having infinite localization length, ha
Lyapunov exponent equal to zero.

When the potentialVn52e cos 2p(nv1f0), Eq. ~2! de-
scribes an electron moving in two dimensions on a squ
lattice in the presence of a transverse magnetic field@4#. In
an appropriate gauge, the problem reduces to a o
dimensional eigenvalue equation,v, e, andf0 being param-
eters that determine the modulation, strength, and phas
the potential, respectively. Alternately, Eq.~2! can also be
viewed as a tight binding model, and for this choice of p
tential it is often referred to as the Azbel-Hofstadter probl
@5,6#. For the case of irrationalv when the potential is qua
siperiodic, extensive studies, both numerical and analy
have established that the Harper@4# ~or the ‘‘almost-
Mathieu’’ @7#! equation
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cn111cn2112e cos 2p~nv1f0!cn5Ecn ~3!

exhibits a metal-insulator transition ate51, going from a
phase where all states are extended to one where all s
are exponentially localized@8#. At the critical value ofe
51, the eigenspectrum is singular continuous@9# and the
wave functions are power-law localized@10# with fractal
fluctuations@11#. For quasiperiodic potentialsVn generated
by discrete quasiperiodic sequences, for example, the
bonacci lattice@12# or the Kohmoto model@13#, all eigen-
states are also power-law localized@14#.

Critical localization is thus ubiquitous in quasiperiod
systems. The Hofstadter butterfly@6#, which is the spectrum
of the Harper map ate51, viewed as a function ofv
P@0,1# thus consists of critical states for all irrationalv.
Signatures of this spectrum have been seen in recent ex
ments @15#, further underscoring the importance of su
eigenstates.

When studied as orbits of the equivalent dynamical s
tem, critical states must correspond to attractors with
largest Lyapunov exponent equal to zero. In earlier work,
have shown that these attractors are also SNAs, and in
present work we examine the properties of such criti
SNAs.

We study orbits of the dynamical system, Eq.~1!, corre-
sponding to the eigenvalue equation, Eq.~3!. The Harper
map @16# which can be written explicitly as the following
two-dimensional skew-product mapping

xn1152@xn2E12e cos 2pfn#21, ~4!

fn115v1fn mod 1, ~5!

has been studied extensively@11,16–18# in order to examine
the connection between strange nonchaotic dynamics@1# and
localized states in quasiperiodic potentials@19,20#. ~The sub-
script n is now the iteration index, andE,e, andv are pa-
rameters.!

We apply the thermodynamic formalism@21,22# to the
study of attractors corresponding to such critical SNA
From previous work it is known that the dynamics of th
Harper map forE, an eigenvalue of the Harper equation, a
e51 is on SNAs which have both Lyapunov exponents ze
Such attractors have an unusual symmetry of local Lyapu
©2003 The American Physical Society04-1
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exponents@17,23#, a feature which is also shared by attra
tors of maps corresponding to critical states of a variety
quasiperiodic Schro¨dinger equations@18,23#.

Although the critical attractor is nonchaotic, the dynam
can be locally unstable which is reflected in the fractal
ometry of the SNA. The need to describe such states b
spectrum of singular measures leads us to characterize
cal SNAs through their multifractal properties. Earlier stu
ies on the multifractal properties of wave functions of loc
ized states@10,24# have suggested that phase transit
behavior may be linked to localization@25#. The present
work reveals connections between critically localized s
tems and phase transitions in the multifractal spectrum.

II. ATTRACTORS OF THE HARPER MAP

For our numerical studies of the mapping, Eqs.~4! and
~5!, we fix the value ofv at (A521)/2, which is the inverse
of the golden mean ratio. The Harper map is nonhyperbo
and the critical attractors, an example of which is given
Fig. 1 for eigenvalueE50, have a highly nonuniform den
sity. ~Only whenE is an eigenvalue does the dynamics occ
on a SNA; ifE is not an eigenvalue, the Lyapunov expone
is strictly negative and the dynamics is on a torus attrac
@18#.! The attractor shown in Fig. 1 is typical for most eige
valuesE.

The Harper map is also an example of a random Mo¨bius
transformation

xn115
axn1b

cxn1d
, ~6!

with a50,b521,c51, and withd5Vn2E changing from
iteration to iteration. The stability characteristics are eas
ascertained: stable and unstable regions on this attracto

FIG. 1. Attractor of the Harper map ate51.0,E50. Regions
where the stretch exponent is positive and negative are shown
big dots, and small dots, respectively. These regions are sepa
by the linesx561.
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indicated~in black and gray, respectively! with the linesx
561 forming the boundary between them.

When all Lyapunov exponents are zero, the separa
between trajectories increases only as a power in time ra
than exponentially@17#. The dynamics on SNAs samples th
stable and unstable regions in a complicated manner so
although the dynamics is nonchaotic in the sense of havin
nonpositive global Lyapunov exponent, there is also int
mittency, owing to local instability. There is thus the pos
bility of multifractal fluctuations in the critical attractor an
we examine this below.

A. Multifractality

We apply the thermodynamic formalism@21# and find that
critical SNAs in the Harper system exhibit the so-call
static phase transition@26#. A ‘‘phase transition’’ in the con-
text of thermodynamics applied to dynamical systems is s
naled by singularities in the free energy at a critical para
eter value. This phenomenon typically occurs
nonhyperbolic dynamical systems@27#.

The static phase transition can be seen by examining
free energy

G~q!5 lim
N→`

1

N
ln ZN~q!, ~7!

where

ZN~q!5(
i 51

N

ln pi
q ~8!

is the partition function. This is obtained by coarse graini
the attractor and partitioning it intoN cells of sidel. The
probability density in thei th cell being denoted bypi andq
is a real parameter@28#. The multifractal nature of the attrac
tor is directly verified through the spectrum of generaliz
dimensions which are defined by@29#

tq[~q21!Dq5 lim
l→0

ln ZN~q!

ln l
. ~9!

In Fig. 2,tq is shown as a function ofq. The change in slope
at q50 is equivalent to nonanalytic behavior in the fre
energy, and denotes a phase transition at this point@22#. The
main implication of the static phase transition is that t
scaling behavior in the probability density of the attractor
not uniform, and this is probed by varyingq.

Because of the skew-product nature of the Harper m
the attractor density is uniform inf since this latter dynam-
ics is merely a rigid rotation. For thex subsystem, the
Frobenius-Perron operator can be written as

Lr~x8!5(
r~x!

uJ~x!u
, ~10!

where the sum is over all preimagesx of x8 under the map
andJ5u]xn11 /]xnu5xn11

2 is the Jacobi determinant of th
map. Points in the stable region in Fig. 1, which shows

ith
ted
4-2
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typical critical SNA, show that the bulk of the density resid
in the stable region, the stripuxu,1, and these points typi
cally have preimages in the unstable regionuxu.1 which is
naturally much less dense. This contributes to the origin
nontrivial scaling behavior, even though the dynamical s
tem is reversible and nonchaotic.

Such behavior is typical near homoclinic tangencies.
such points the map is nonhyperbolic and the invariant d
sity scales nontrivially. So with variation ofq, the dominat-
ing contribution to the partition function comes either fro
the cells containing the homoclinic tangencies or from
rest of the attractor. The separation of the attractor into se
points with two different phases is manifested in the sta
phase transition@27#. The creation of SNAs in the Harpe
system through homoclinic collisions@17# may be one rea-
son for the existence of such a phase transition.

The standard multifractal treatment@30# as applied above
uses the gauge function with power law dependence
lengths, given byLq( l )5 l 2t. If the measure on the attracto
is composed of subsets of power-law singularities of stren
a @31#, thena is related tot and q through the relationa
5dt/dq. The static phase transition indicates that proba
ity pi in certain cells in the phase space might scale diff
ently from l a, which is the scaling form assumed in th
choice of gauge function. In order to be able to employ
more appropriate choice of gauge function we note that
the Harper system, fluctuations in supercritical states can
examined by factoring out an exponentially decaying p
@11#. The wave function at sitek is then written asck
5exp(2kg)hk , where g is the inverse localization length
Given the correspondence between critical SNAs and crit
states, it is suggestive that the measure on the attractor ca
expressed in terms of a generalized gauge function@29#

Lq~ l !5@exp~1/l !R#rql 2tq, ~11!

using which the partition functionG is defined through the
cell probabilitiespi as

FIG. 2. Behavior oftq andrq5(q21)Eq as a function ofq.
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G~q!5 lim
l→0

(
i

pi
qLq~ l i !. ~12!

WhenG is finite and nonzero we haverq5(q21)Eq , where
Eq is the spectrum ofexponentialdimensions@29#. Introduc-
ing the gauge function as

lq~ l i !5)
j 51

n1

@exp( j )~1/l j !
Rj #r j l i

2t , ~13!

where exp(j)(x)5exp@exp(j21)(x)#, exp(0)(x)5x. The partition
function for finite l can be written as

G~q,t,r,R,l !5(
j

Nj pj
qexp@r~1/l j !

R# l j
t . ~14!

The powerR in Eq. ~11! comes from the form of harmonic
length scale dependence present in the system and its v
is determined from the condition that atq50,Eq5Dq @29#.
In the present case we find the value ofR numerically to be
0.418 93, andNj is the number of cells of sizel j with corre-
sponding probabilitypj . Taking the limitl→0 so as to keep
G nonzero and finite, we obtain the expression for expon
tial dimensions as

~q21!Eq52 lim
l→0

max@ l j
Rln~Nj pj

q!#. ~15!

The static phase transition is evident atq50 in the behavior
of Eq , which is shown in Fig. 2.

Note that in the Harper system, the stable regionuxu,1
occupies a vanishing fraction of the entire phase space.
attractor, which has capacity dimension 2, has portions
both the stable and the unstable regions. Owing to the s
metry of the stretch exponents, the integrated density in th
two regions are equal, but cells in the unstable regions n
essarily have lower density. These dominate the contribu
for q,0: here the corrections to power-law scaling a
dominant, makingEq the leading dimension. Aboveq50,
the high density region is probed; these are mainly in
stable regions, where the pure power-law behavior ta
over, andDq is the leading dimension.

We have studied other critical SNAs in the Harper syst
~as well as in other maps! and find that this feature is char
acteristic of all such critical SNAs@32#.

B. Nonextensivity

Sensitivity to initial conditions on an attractor is measur
by the asymptotic Lyapunov exponent. When this expon
is zero, the system is ‘‘at the edge of chaos’’ or margin
@33#, and requires more detailed examination@34#. A number
of quantities show a weaker sensitivity, diverging only as
power of the control parameter. On critical SNAs, for i
stance, the Lyapunov exponent converges to zero as a p
@17#.

Generalizations of the Boltzmann-Gibbs entropy, name
S52( i pi ln pi , to reflect this weaker convergence have be
suggested@34,35#, under the framework of the so-called no
4-3
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extensive thermodynamics. From the scaling properties
multifractals the following form of the entropy@35# was
proposed:

SQ5
1

~12Q! H 12(
i 51

m

pi
QJ , ~16!

which in contrast to the usual Boltzmann-Gibbs form of t
entropy~to which it also reduces in the limitQ→1) is non-
extensive@35# for QÞ1. The Tsallis entropic indexQ* is
the appropriate value ofQ for the map under consideration
and the corresponding system is subadditive ifQ* ,1 or
superadditive ifQ* .1. The Tsallis formalism has been a
plied largely for one-dimensional maps in the marginal ca
namely, for generalized logistic maps@33# and circle maps
@36#. These studies reveal that the power-law sensitivity
initial condition is more suitably described in terms of aQ*
value different from unity, indicating nonextensive nature
the thermostatistics at the period doubling and tangent bi
cation points and also near onset of chaos. Critical SN
with all Lyapunov exponents zero and an underlying frac
structure, are clearly suitable candidates on which the Ts
formalism can be applied.

We compute the Tsallis entropic indexQ* from the non-
extensive entropy following the procedure suggested by T
lis and co-workers@37#. The phase space is divided intom
equal cells. A set ofN initial points are selected in one o
these. Under the dynamics, these points spread to other c
and we follow the quantitiespi(t), namely, the occupation
probability of celli at timet. Using Eq.~16! we compute the
Tsallis entropy as a function of time.

When t50, probabilities of all the boxes are zero exce
one, and henceSQ(t)50. SQ(t) increases with time, but its
growth is bounded from above by a constant saturation va
corresponding to the equilibrium distribution of points on t
attractor. ThereforeSQ(t) saturates in the long time limit fo
all values ofQ. Prior to saturation, and after an initial tran
sient period,SQ(t) varies linearly only forQ5Q* , thereby
defining the Tsallis entropic index.

For the critical SNA at band center, we find thatQ*
'0.82. ForQ5Q* , SQ(t)/t remains finite, whereas forQ
,Q* , SQ(t)/t diverges while for Q.Q* , SQ(t)/t→0.
When the system shows strong sensitivity to initial con
tions, which is characterized by positive Lyapunov expone
Q* is 1. But for systems at the edge of chaos with lead
Lyapunov exponent being zero, the system shows weak
sitivity to initial conditions, and the value ofQ* is expected
to be different from and smaller than 1. The value ofQ*
gives a measure of the time required for the initial conditio
to spread and reach the equilibrium distribution. So the ti
when the system begins to saturate depends on the valu
Q* . In Fig. 3, such tendency towards saturation becom
evident at aroundt538.

As suggested by Latoraet al. @37#, a sensitive method fo
identifying linear growth inSQ(t) is to fit the curves to a
quadratica1bt1ct2 in the interval @ t1 ,t2# and minimize
the nonlinear term. Definingr 5ucu(t11t2)/b @37#, note that
r 50 implies ideal linearity. The timest1 and t2 correspond
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to the end of initial transient period and the onset of satu
tion, respectively. The variation ofr with Q ~inset of Fig. 3!
for the present case shows thatSQ does indeed have a linea
growth for Q5Q* . We chooset2535 for the calculation of
r for all Q; initial transients decay byt510, and therefore an
appropriate value fort1512.

Efficient averaging over the initial conditions is require
to minimize numerical fluctuations@38#. We partition the
phase space in a set ofm equal sized cells. A numberN
initial conditions (x,f) are selected inside a given celli and
allowed to evolve under the map dynamics for a specifi
time. We determine, at each time step, thecumulativenum-
ber of cells that are occupied and denote this number asni .
The procedure is repeated for each of the cells. For ave
ing, we include only those cells that have maximal spre
ing, namely, those initial cells for whichni exceeds a thresh
old nt .

This method does not give the value of entropic indexQ*
to any higher precision due to numerical fluctuation, but n
ertheless confirms the nonextensive nature of the attracto
the critical point of the Harper map. Furthermore,Q* ,1
indicating subadditive thermostatistics. In case of power-l
mixing of the phase space, as in the case of the critical
tractor studied here, the subadditive nature of the entrop
expected@36#. The weak sensitivity of the initial condition
also implies that the geometrical support of the attracto
multifractal @37#. The Tsallis entropy@35# is related to Renyi
entropies, and thus signatures of this behavior can be
pected in the multifractal and dimensional spectra of
map. In a related context@25#, subadditivity has also bee
conjectured to be equivalent to localization. The pres
finding lends support to this conjecture.

III. SUMMARY

It is known that fluctuations in wave functions in th
Harper system are self-similar and universal@11#. Our

FIG. 3. Variation ofSQ with iteration for differentQ. At Q
5Q* '0.82SQ increases linearly. The cutoffnt is taken to be 7000,
and the resulting curve is an average over 942 runs. The variatio
nonlinearity indexr with Q is shown in the inset. For calculation o
r, we taket1512 andt2535 for each value ofQ. At later timesSQ

approaches a constant value.
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present results show that there are higher-order effects
more properly describe critical states. Although critical wa
functions are localized, the envelope of the probability d
sity shows very slow decay, with regions of slow variation
well as regions of relatively more rapid variation. The flu
tuations in these different types of regions have separate
distinct behaviors: they are effectively probed by the mu
fractal dimensionsDq andEq , respectively.

The nonextensive thermodynamics@34# has been shown
to apply to a variety of dynamical systems@35# with leading
Lyapunov exponent zero. Critical SNAs in the Harper syst
are therefore natural candidates for application of the Tsa
formalism. While we find that these systems have a sub
ditive thermodynamics, it should be pointed out that unl
the typical cases that have hitherto been studied~such as the
logistic map at the period-doubling accumulation point@36#!
where small perturbations throw them into a chaotic pha
the dynamics in the Harper map~or maps derived from sub
stitutional sequences such as Fibonacci map@39#! is always
tio

of
r
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ys
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nonchaotic. Thus although the attractors are fractal, there
never be dynamical instability: Lyapunov exponents a
strictly nonpositive. The present findings are quite gene
and apply not only to the critical SNAs in the Harper syste
but also to the critical SNAs in other systems~such as the
Fibonacci or the Thue-Morse chain! as well @32#.

Recent experiments@15# have realized the Harper system
evidence of the fractal energy spectrum for irrationalv has
been seen in quantized Hall measurements. Since these s
are all examples of critical localization, our present resu
show that this provides a suitable and robust experime
system in which the implications of nonextensive thermod
namics can be studied.

ACKNOWLEDGMENT

This work was supported by a grant from the Departm
of Science and Technology.
.

s

tti,

ys.
i,

r is
ti-

.I.

can
@1# A. Prasad, S.S. Negi, and R. Ramaswamy, Int. J. Bifurca
Chaos Appl. Sci. Eng.11, 291 ~2001!.

@2# C. Grebogi, E. Ott, S. Pelikan, and J. Yorke, Physica D13, 261
~1984!.

@3# A.S. Pikovsky and U. Feudel, Chaos5, 253 ~1995!.
@4# P.G. Harper, Proc. Phys. Soc., London, Sect. A68, 874~1955!.
@5# M.Ya. Azbel, Sov. Phys. JETP19, 634 ~1964!.
@6# D. Hofstadter, Phys. Rev. B14, 2239~1976!.
@7# Y. Last, in Proceedings of the XI International Congress

Mathematical Physics, Paris, 1994, edited by D. Iagolnitze
~International Press, Cambridge, MA, 1995!, pp. 366–372; S.
Jitomirskaya,ibid., pp. 373-382; A. Gordon, S. Jitomirskay
Y. Last, and B. Simon, Acta Math.178, 169 ~1997!.
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